

Life Cycle Assessment

Polyfloor by Polybid

Publication date:

In accordance with ISO 14040/44 and EN 15804+A2 the PCR of Construction Products.

Table of Contents

General Information	3
Declarations of LCA	3
Product Information	4-5
Life Cycle Assessment Calculation Rules	6-7
System Boundaries	7
Life Cycle Modules (stages)	8-9
Environmental Impacts	10-11
The Environmental Impacts of the Polyfloor	10
Abbreviations of Indicators	11
References	12-14

General Information

LCA Owner	אין שאר הניתו הער ביעראל Polybid Mishmar hanegev, Israel https://polybid.co.il/ marketing@polybid.co.il							
LCA Authors	leading climate action ii Ben Aharon and Eden Shukrun rechev St. 4, Tel-Aviv 6777137, Israel rw.kvs.co.il info@kvs.co.il ion of the declaration and data, according to ISO 14040/44 and EN15804+A2:2019.							
Independent veri	fication of the declaration and data, according to ISO 14040/44 and EN15804+A2:2019.							
⊠external	□internal							
Third Party Verifier: Prof. Ing. Vladimír Kod LCA Studio Šárecká 5,16000 Prague 6 - Czech Repu	LCA studie							
www.lcastudio.cz								

Declarations of LCA

The LCA owner has the sole ownership, liability, and responsibility for the LCA.

The LCA is based on the standard EN 15804+A2. LCAs of construction products may not be comparable if they do not comply with this standard. Only LCAs which are based on the PCR of construction products EN 15804+A2 and comply with the rules of this standard can be compared.

Product Information

Products included in this LCA:

 Polyfloor- hollow polystyrene foam boxes used to separate the structure from the ground and to provide a building slab, have strength commensurate with the thickness of the slab, as well as good fire resistance. Can be used in the foundations of buildings designed specifically for construction on clayey and heaving soils.

Name of Product	Material	Polyfloor			
Raw Materials	EPS	90-100%			
Raw Materials	Additives	0-10%			
Packaging Materials	Polyethylene cover	<0.5%			
Thickness [cm]		10-30			
Weight of product [kg]		Per unit- 0.16-0.48			
Dimensions [cm]		50x60			
UN CPC	369 – other plastics products				

Specification:

Name of Product	Polyboard
Reaction to Fire Class	E
Color	White
Density [kg/m³]	16
Bearing capacity of a concrete floor thickness of 20 cm [kg/m²]	MIN 500

Conversion factors:

Polyfloor foam boxes come in a variety of sizes and densities, the relationship between the weight and environmental impact is linear, therefor the results can be converted by multiplying the environmental impact results (in tables in p. 11) by the factors in table below:

Catalog number	Density [kg/m3]	Height [cm]	Width [cm]	Length [cm]	Conversion factor
Boxes					
04-479-0150	16	15	50	60	0.702
04-479-0200	16	20	50	60	0.891
04-477-0200	16	20	50	60	0.849

04-421-0200	16	20	40	60	0.771
04-479-0250	16	25	50	60	1.000
04-479-0300	16	30	50	60	1.098
04-477-0250	16	25	50	60	1.019
04-422-0100	16	10	50	60	0.563
04-422-1100	16	10	50	60	0.563
04-477-2250	20	25	50	60	1.200
04-422-0190	20	20	50	60	0.828
04-479-2200	20	20	50	60	0.988
04-477-4250	22	25	50	60	1.319
04-479-4200	22	20	50	60	1.149
04-479-4300	22	30	50	60	1.421
04-477-3250	30	25	50	60	1.800
04-422-0205	35	20	50	60	2.053
04-477-1250	35	25	50	60	2.100
04-422-0206	63	20	50	60	0.352
04-477-5250	63	25	50	60	0.390
04-479-5250	63	25	50	60	0.360
04-479-1200	25	20	50	60	1.363
04-479-4250	35	25	50	60	2.002
Canals					
04-458-0100	20	10	20	125	0.393
04-456-0100	20	10	25	100	0.535
04-459-0100	20	10	30	100	0.677
04-458-0150	20	15	20	125	0.607
04-456-0150	20	15	25	100	0.651
04-459-0150	20	15	30	100	0.805
04-458-0200	20	20	20	125	0.726
04-456-0200	20	20	25	100	0.823
04-459-0200	20	20	30	100	0.981
04-458-0250	20	20	25	125	0.819
04-456-0250	20	25	25	100	0.867
04-459-0250	20	25	30	100	0.967

Life Cycle Assessment Calculation Rules

Declared Unit: The declared unit is 1 Unit of Polyfloor, 0.43 kg, 60x50x25 cm.

Type of LCA: Cradle-to-gate with modules C1- C4, D.

Declared Modules: A1-A3, C1-C4, D.

Goal and Scope: This LCA evaluates the environmental impacts of the production of 1 unit of Polybid's Polyfloor EPS boxes from cradle to gate with modules C1- C4, D.

Reference Service Life (RSL): The Reference Service Lives of the product is at least 50 years.

Cut-off Criteria: All raw materials for the manufacturing of the declared EPS board, the required energy, water consumption and the resulting emissions are considered in the life cycle assessment. That way, components with a share of even less than 1% are included. All neglected processes contribute less than 1% to the total mass.

Allocations: Overall and in general, allocations were avoided whenever possible. Nevertheless, allocations were made in the general energy and water usage. Reuse, recycling and recovery allocations were not applied, but the recovery of EPS loss in the manufacturing process was taken into account.

Assumptions and Limitations:

- Approximated generic data has been used for additives which were not found in the Ecoinvent database, in addition to other databases and to research that was carried out.
- Generic data of larger areas have been used for some materials and processes inputs.
- Part of the raw material EPS data was modeled from an LCA supplied by the manufacturer.¹
- In cases of multiple suppliers for one raw material a proportional share was taken into account.
- Assumptions were made regarding the transportation for all materials required for manufacturing and packaging the product. Average data of the distance was included.
- The primary energy of raw materials was calculated for all renewable and non-renewable raw materials that had LHV value sources.

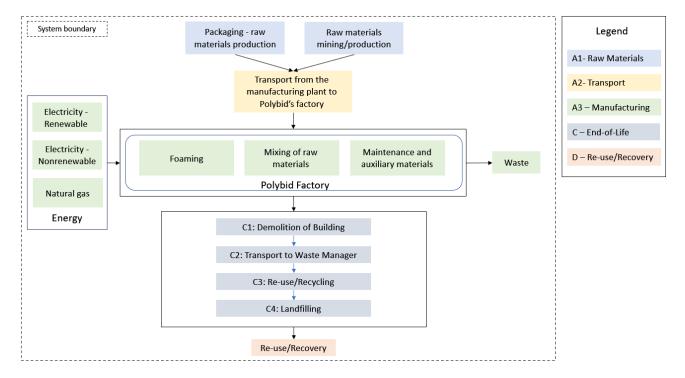
Geography: The study represents the manufacturing of the Polyfloor in Polybid's manufacturing factory located in Mishmar HaNegev, Israel.

Time Representativeness: The data is representative for the year 2022 and was collected for 12 months from January to December. The electricity data was collected in 2023 for the months January to October.

Software: Simapro 9.4.0.3.

Foreground Data: The LCA is based on production data e.g., material flows and energy consumption, provided by Polybid.

Background Data: For modelling the LCA, Ecoinvent (v3.8-2021) and USLCI data (The Federal LCA Commons, U.S. Department of Agriculture) were used. Since there are hardly any datasets available for Israel, background data for larger area which Israel is included in was used for the life cycle inventory. For electricity data, an Israeli dataset was prepared according to the data of 2022 from the official report of the Israel electricity authority [1]. For water use data, an Israeli dataset was prepared according to the data of 2020 from the report of the National Water Institution of Israel [2].


PCR: EN 15804+A2 and 2019:14 for construction products, version 1.3.2.

Impact Model Applied: EN 15804 + A2 method.

Standards Applied: ISO 14040/44.

System Boundaries

The general life cycle of EPS boxes is as shown in the following figure:

Life Cycle Modules (stages)

The modules chosen for the LCA (X - module included in LCA, MND - module not declared):

PRODUCT STAGE		CONSTRUCTION PROCESS STAGE			USE STAGE				ENI	OF LIF	E STAGI	Ε	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES			
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
х	x	x	MND	MND	MND	MND	MND	MND	MND	MND	MND	х	х	х	х	х

Within this Life Cycle Assessment, the following processes are considered:

Product Stage (A1-A3):

Module A1 – Supply of raw materials: The declared EPS boxes consist mainly of polystyrene and a small amount of additives. The raw materials supply includes raw material extraction/production that are taken into account in this study. The raw material of packaging, polyethylene is also included in this module.

Module A2 - Transport of raw materials: The polystyrene is produced abroad in various countries in Asia and Europe. Accordingly, transport distances are varied and done by ships and trucks. Further raw materials are supplied from manufacturers within Israel.

Module A3 - Manufacturing: The manufacturing includes mixing polystyrene granules with pentane and exposing them to steam, which causes their expansion. The expanded polystyrene is molded into blocks with various sizes and densities. Electricity and natural gas are consumed during the manufacturing process, in addition to maintenance procedures.

End-of-Life stage (C1-C4):

Module C1 - De-construction: Demolition of the EPS boxes takes place with the whole demolition of the building/construction. Thus, it is assumed that energy used for the demolition

of the EPS boxes has minor significance and the environmental impact of this module is set to be zero.

At the end-of-life, in the demolition phase 100% of the waste is assumed to be collected as mixed construction waste.

Module C2 – Transportation: Transportation distance to the closest disposal area is estimated as 50 km by a 16-32 tonne lorry, which is the most common.

Module C3 – Waste processing: According to interviews with industry executives that manage the construction waste in Israel (GREENMIX, Negevecology), and research on the waste sector in Israel, there is no any significant processing of the construction waste and especially not for the EPS boxes, therefore the environmental impact of this module is set to be zero. There is processing of polystyrene packaging from municipal waste in an RDF facility, therefor there is a possibility for the conditions to change in the upcoming years.

Module C4 – Disposal: it is assumed and modeled that 100% of the EPS boxes will be landfilled in the Israeli landfills of construction materials.

Resource Recovery stage (D):

Module D – Reuse-Recovery-Recycling potential: Module D is set to be zero since the is no reuse, recovery or recycling of the products.

Exclusion of Modules

Modules A4-A5, B1-B7 are not mandatory and excluded from this LCA according to the PCR of construction products EN 15804+A2.

Environmental Impacts

All characterization models, characterization factors and methods used are as defined in the PCR of construction products EN 15804+A2 Annex C Tables C.1-C.4.

The Environmental Impacts of the Polyfloor

The Impact	The Impact Assessment - for 1 Unit of Polyfloor, 0.43 kg, 60x50x25 cm.										
Impact Category	Unit	A1-A3	C1	C2	C3	C4	D				
Climate change - Fossil	kg CO2 eq	1.24E+00	0	3.50E-03	0	2.19E-03	0				
Climate change - Biogenic	kg CO2 eq	4.07E-03	0	3.02E-06	0	2.21E-06	0				
Climate change - Land use and LU change	kg CO2 eq	2.28E-04	0	1.40E-06	0	2.12E-06	0				
Climate change - Total	kg CO2 eq	1.24E+00	0	3.51E-03	0	2.20E-03	0				
Ozone depletion	kg CFC11 eq	1.39E-08	0	8.11E-10	0	9.15E-10	0				
Acidification	mol H+ eq	3.51E-03	0	9.94E-06	0	2.09E-05	0				
Eutrophication, freshwater	kg P eq	7.26E-06	0	2.50E-08	0	2.06E-08	0				
Eutrophication, marine	kg N eq	8.10E-04	0	1.98E-06	0	7.34E-06	0				
Eutrophication, terrestrial	mol N eq	8.63E-03	0	2.20E-05	0	8.08E-05	0				
Photochemical ozone formation	kg NMVOC eq	3.23E-03	0	8.46E-06	0	2.32E-05	0				
Resource use, fossils	MJ	3.60E+01	0	5.31E-02	0	6.29E-02	0				
Resource use, minerals and metals	kg Sb eq	1.58E-06	0	1.24E-08	0	5.13E-09	0				
Water use	m3 depriv.	3.11E-01	0	1.62E-04	0	2.85E-03	0				
Climate Change - GHG	kg CO2 eq	1.24E+00	0	3.50E-03	0	2.20E-03	0				
Disclaimer 1	radiation on to possible r disposal in t	human healt nuclear accid underground	h of the nu ents, occup facilities. P	y with eventua clear fuel cycle ational exposu otential ionizin naterials is also	. It does no re nor due ng radiation	ot consider eff to radioactive n from the soi	ect due waste I, from				
Disclaimer 2			esults are h	npact indicator high or as there indicator.							

Indicators Describing Resource Use – for 1 Unit of Polyfloor, 0.43 kg, 60x50x25 Cm.											
Parameter	Unit	A1-A3	C1	C2	С3	C4	D				
PERE	MJ	3.02E+00	0	7.59E-04	0	4.98E-04	0				
PERM	MJ	0.00E+00	0	0.00E+00	0	0.00E+00	0				
PERT	MJ	3.02E+00	0	7.59E-04	0	4.98E-04	0				
PENRE	MJ	1.91E+01	0	5.31E-02	0	6.29E-02	0				

PENRM	MJ	1.69E+01	0	0.00E+00	0	0.00E+00	0
PENRT	MJ	3.60E+01	0	5.31E-02	0	6.29E-02	0
SM	kg	0.00E+00	0	0.00E+00	0	0.00E+00	0
RSF	MJ	0.00E+00	0	0.00E+00	0	0.00E+00	0
NRSF	MJ	0.00E+00	0	0.00E+00	0	0.00E+00	0
FW	m3	6.25E-03	0	6.01E-06	0	6.77E-05	0

Waste Categories and Output Flows – for 1 Unit of Polyfloor, 0.43 kg, 60x50x25 Cm.										
Parameter	Unit	A1-A3	C1	C2	С3	C4	D			
HWD	kg	1.75E-05	0	1.39E-07	0	9.56E-08	0			
NHWD	kg	2.90E-02	0	2.78E-03	0	4.30E-01	0			
RWD	kg	5.52E-06	0	3.59E-07	0	4.14E-07	0			
CRU	kg	0	0	0	0	0	0			
MFR	kg	0	0	0	0	0	0			
MER	kg	0	0	0	0	0	0			
EEE	MJ	0	0	0	0	0	0			
EET	MJ	0	0	0	0	0	0			

Abbreviations of Indicators

GWP-fossil Global warming potential of fossil fuels

GWP-luluc Global warming potential of land use and land use change

GWP-biogenic Global warming potential of biogenic carbon

GWP-total Global warming potential total

ODP Depletion potential of the stratospheric ozone layer

Acidification potential

EP-freshwater Eutrophication potential, fraction of nutrients reaching freshwater end compartment Eutrophication potential, fraction of nutrients reaching marine end compartment

EP-marine Eutrophication potential of accumulated exceedance, the oversaturation of an eco-system with non-organic nutrients

EP-terrestrial

Formation potential of tropospheric ozone photochemical oxidants

ADP -minerals & metals Abiotic depletion potential for minerals and metals

ADP-fossil Abiotic depletion potential for fossil resources WDP User deprivation potential, deprivation weighted water consumption

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM Renewable primary energy resources used as raw materials

PERT Total use of renewable primary energy resources

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM Non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources

SM Use of secondary material RSF Use of renewable secondary fuels NRSF Use of non-renewable secondary fuels

FW Use of net fresh water HWD Hazardous waste disposed NHWD Non-hazardous waste disposed RWD Radioactive waste disposed CRU Components for re-use MFR Materials for recycling MER Materials for energy recovery EEE Exported electrical energy EET Exported thermal energy

Critical Review Report

External Critical Review

of an LCA report entitled: "Life Cycle Assessment of EPS boards Polyboard, Polyfloor, Polysilver"

Author of Critical Review Report

Prof. Ing. Vladimír Kočí, PhD, Šárecká 5, 16000 Prague 6, Czech Republic, www.lca.cz

The author of the LCA study reviewed

Shai Ben Aharon and Eden Shukrun

KVS

https://www.kvs.co.il/

leading climate action

Commissioner of the study:

Polybid

https://polybid.co.il/

marketing@polybid.co.il

Mishmar hanegev, Israel

T: 08-6408555

SUMMARY AND RECOMMENDATION

The Life cycle assessment report "Life Cycle Assessment of EPS boards, Polyboard, Polyfloor, Polysilver" developed by Shai Ben Aharon and Eden Shukrun conforms to the ISO 14040 standard. Furthermore, the data collection and modelling methods are described clearly and correspond to the state of the art. Finally, the report is well-written, transparent, and consistent.

According to ISO 14040, the critical review process ensures that:

- The methods used in the LCA study are consistent with the international standard;
- The methods used in the LCA study are scientifically and technically valid;
- · The data used are appropriate and reasonable concerning the goal of the study;
- · The interpretations reflect the limitations identified and the goal of the study;
- The study report is transparent and consistent.

Several questions were asked about the study's implementation in the verification framework. All these questions were satisfactorily answered, and LCA models were demonstrated.

Prague, March 20th, 2024

prof. Ing. Vladimír Kočí, PhD, Šárecká 5, 160 00 Prague 6, Czech Republic, www.lca.cz

References

- [1] "The electricity economy in Israel September 2023" by The Israel Electricity Authority.
- [2] N. M. &. V. B. &. G. Thoma, "A national-level LCA of a water supply system in a Mediterranean semi-arid climate—Israel as a case study," 2020.
- [3] T. S. S. Body, "EN 15804:2012+A2," UNE, Madrid, Spain, 2020.
- [4] The PCR of EN 15804:2012+A2:2019/AC:2021.
- [5] "ISO 14040," The Standards Institution of Israel, 2010.
- [6] "ISO 14044," The International Organization for Standardization, 2006.
- [7] Ecoinvent, "System Models," [Online]. Available: https://ecoinvent.org/the-ecoinventdatabase/system-models/.
- [8] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations principles and procedures.
- [9] Ecoinvent database v3.8 (2021)
- [10] Plastics euro, Eco-profile of grey and white Expandable Polystyrene (EPS), November 2022. https://plasticseurope.org/sustainability/circularity/life-cycle-thinking/eco-profilesset/
- [11] Polybid, Technical info, https://polybid.co.il/
- [12] USLCI, The Federal LCA Commons, U.S. Department of Agriculture.
- [13] Li Wanwei (2019), Styrene-acrylic emulsion, preparation method and application thereof, and latex paint coating. CN110982353A.